Mammalian alcohol dehydrogenases of separate classes: intermediates between different enzymes and intraclass isozymes.

نویسندگان

  • H Jörnvall
  • J O Höög
  • H von Bahr-Lindström
  • B L Vallee
چکیده

A comparison of the structure of class II human liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) (containing pi subunits) with those of the human class I isozymes (containing alpha, beta, and gamma subunits) reveals differences at about 40% of all positions. Variations are large for active-site regions, the segment around the second zinc atom, and for segments involved in subunit interactions. The two classes of alcohol dehydrogenase have diverged to exhibit structural differences to about half the extent of those between alcohol and polyol dehydrogenases. Hence, the two classes of alcohol dehydrogenase represent steps in enzyme rather than isozyme divergence. An evolutionary scheme that relates different types of zinc-containing mammalian dehydrogenases to one another encompasses at least three levels of gene duplication subsequent to the early step(s) of assembly of building unit(s). The first level of duplication results in the formation of now clearly different enzymes. The second level concerns the various classes of alcohol dehydrogenase, forming steps between typical enzymes and isozymes. The third level encompasses recent and multiple duplications in isozyme evolution of alcohol dehydrogenases. This scheme, linking zinc-containing dehydrogenases at different levels, resembles that in other protein families and reflects general patterns in protein relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in ...

متن کامل

Thiodiglycol, the hydrolysis product of sulfur mustard: analysis of in vitro biotransformation by mammalian alcohol dehydrogenases using nuclear magnetic resonance.

Thiodiglycol (2,2'-bis-hydroxyethylsulfide, TDG), the hydrolysis product of the chemical warfare agent sulfur mustard, has been implicated in the toxicity of sulfur mustard through the inhibition of protein phosphatases in mouse liver cytosol. The absence of any inhibitory activity when TDG was present in assays of pure enzymes, however, led us to investigate the possibility for metabolic activ...

متن کامل

Kinetic characterization of yeast alcohol dehydrogenases. Amino acid residue 294 and substrate specificity.

A three-dimensional model of yeast alcohol dehydrogenase, based on the homologous horse liver enzyme, was used to compare the substrate binding pockets of the three isozymes (I, II, and III) from Saccharomyces cerevisiae and the enzyme from Schizosaccharomyces pombe. Isozyme I and the S. pombe enzyme have methionine at position 294 (numbered as in the liver enzyme, corresponding to 270 in yeast...

متن کامل

The vertebrate alcohol dehydrogenase system: variable class II type form elucidates separate stages of enzymogenesis.

A mixed-class alcohol dehydrogenase has been characterized from avian liver. Its functional properties resemble the classical class I type enzyme in livers of humans and animals by exhibiting low Km and kcat values with alcohols (Km = 0.7 mM with ethanol) and low Ki values with 4-methylpyrazole (4 microM). These values are markedly different from corresponding parameters of class II and III enz...

متن کامل

The genetic control of alcohol dehydrogenase and octanol dehydrogenase isozymes in Drosophila.

HE detection, by agar gel electrophoresis, of as many as ten alcohol dehydrogenase isozymes in Drosophila melanogaster (URSPRUNG and LEONE 1965) presents a problem in the interpretation of genetic and epigenetic control of synthesis and function of multiple forms of enzymes. The observation that the three slowest cathodalIy migrating isozymes show a more intensive formazan staining when primary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 84 9  شماره 

صفحات  -

تاریخ انتشار 1987